
A standard approach to production systems modelling
based on Finite State Automata

Giacomo Tavola, Marco Taisch, Filippo Boschi
Department of Management, Economics and Industrial Engineering

Politecnico di Milano
 Milano, Italy

[giacomo.tavola marco.taisch, filippo.boschi]@polimi.it

Abstract— Simulation has been used for decades as a tool to
support decision making in manufacturing systems. It is far
cheaper and faster to build a virtual system and experiment with
different scenarios and decisions before actually implementing the
system. Simulation has been widely used to support decisions in
manufacturing systems’ operations and configuration.
Nevertheless, knowing the changeable nature of manufacturing
systems that is affecting the current production environment due
to smart technologies adoption and market demands, a new
approach to model a typical production system based on a
modular and lean paradigm is needed to make the simulation
methodologies aligned with “fast reconfiguration” paradigm. In
this context, the objective of this paper is to propose a novel
approach to create a production model leading to speed-up the
simulation of the dynamic behaviour of a flexible and
reconfigurable production system. In the first part of this paper, a
modular representation of a generic production line is proposed
based on a reduced standard set of components. In particular,
independent standard entities representing each actor involved
within a typical production line (i.e. machines, buffers, etc) are
introduced. Moreover, presenting the rules that regulate how
these entities can interoperate each other, and a modular, scalable
and interoperable model to develop an adaptive, changeable
simulation activity is shown. Finally, the instantiation of specific
configuration based on different modular entities, using Finite
State Automata (FSA) formalism and its application on Industrial
use case is depicted; implemented configurations can be executed
on different technology platforms (MS-Excel/VBA, Matlab-
Symulink or others).

Keywords—Production Systems, simulation, modelling, Finite
State Automata

I. INTRODUCTION
Simulation and optimization of Discrete Event Systems (DESs)
can be performed using two different modules. The first one is
based on simulation activity and it aims at evaluating the system
performance while the second one carries out the optimization
techniques for the generation of the optimal configuration [1].
As far as the simulation techniques are concerned, earlier
researchers have recognised the problems in representing the
manufacturing system especially in how they are controlled
[2],[3]. Earlier tools were more complex with limitations in
terms of flexibility in representing reconfigurable systems [4].
In fact, these simulation activities adopted for production
process analysis are usually based on predefined models. In this

context, the behaviour of any production system, controlled, for
instance, with a Kanban logic or with a typically push logic (i.e.
Base-Stock Control Systems) is usually developed in previous
studies by means of already existing standardized models [5].
Hence, having already determined a priori the logic and the
operation of production control system, such models provide
immediately all production parameters, which are subject of the
simulation itself. This problem arises when the process to be
analysed is not exactly replicable with one of such models. This
case demonstrates the need to use elementary, modular and
interoperable entities allowing to compose a typical production
process in order to model any process, from the more common
to the more complex.
Therefore, this concept leads to readapt the approach to be
adopted before simulation activity changing the question of
‘which model is most appropriate for replicating a specific
production logic?’ to ‘what combination of standard
components is the most appropriate?’

For this reason, new approaches for modelling manufacturing
systems are needed to face the emergence of object oriented
design approach and so also modular design and software
reusability topics gained increased interests [4].

The initial manufacturing system model must capture the nature
of the system by describing system objects, flows, systems’
functions and processes. Hence, following the literature review,
a modelling language for system design must be able to
describe system entities, functions and behaviour and it should
provide a unified platform that integrates them [6]. Moreover,
it should be scalable, changeable and interoperable. Finally, it
should be simple and understandable to developers and system
experts and capable of representing the system in a common
software [4];

Following these characteristics, the objective of this paper is to
describe an approach for the design of discrete event simulation
(DES) models of large reconfigurable and flexible
manufacturing systems based on a limited set of finite state
automata (FSA) implementation for modular manufacturing
entities and relationships. The proposed approach implies a
Discrete Event Simulation (DES) as it is based on a physical
system representation based on mathematical/logic model able
to point out state changes at precise points in simulated time

[7]. Moreover both the nature of the state change and the time
at which the change occurs mandate precise description. These
mathematical/logical architectures are included in the Finite
State Automata (FSA). For this reason, the proposed approach
refers, also, to Agent-based (AB) simulation as its specific
instance (Finite State Automata) are, in accordance with
Wooldridge and Jennings, autonomous, proactive, reactive and
“social” as they can communicate or interact with other systems
[8].
Moreover, this approach simplifies the process of creating new
manufacturing scenarios where it can be frequently modified
without any depth knowledge of simulation language by
essential shop floor system parameters and logics and
simplified description of relative interconnections.
 Chapter II presents the set of elementary entities beneath the
proposed approach considering the way single production
entities (mainly machines and buffers, but also operators and
applications) behave based on the interaction they have with
surrounding entities, which means the way they exchange
signals to coordinate material flows, and the basic working
parameters as duration of operations and setups for different
product types.
Chapter III describes how it is possible the implementation of
the modelling of a production system utilizing the basic
components and eventually come to a complex system. Some
specific functional modules are described as well to
demonstrate how complex workflow can be easily represented.
Chapter IV presents how the basic functional block are
implemented based on Finite States Automata (FSA)
formalism. Each implemented automata is described on a
simple sheet utilizing a limited instruction set and, if needed,
can be amended.
The Chapter V depicts the simulation of a system both from the
product perspective (single products, lots and associated
parameters) and the resource perspective (availability of
machine, faults, setup, repair).

II. MODELLING A PRODUCTION SYSTEM WITH STANDARD
COMPONENTS

A typical production system can be described as a collection of
interconnected equipment (i.e. workstations and buffers) and
human resources, whose function is to perform one or more
processing and/or assembly operations on a starting raw
material, part, or set of parts [9].
In such system, a discrete flow of material can be regulated with
different production logics that can be distinguished in a pull or
push logic control system [10],[11].
The characterizations of the push/pull distinction that have
appeared in the literature can be summarized into the following
three definitions:

1. A pull system initiates production as a reaction to
current demand, while a push system initiates
production in anticipation of future demand [12];

2. A pull system is one that explicitly limits the amount
of WIP that can be in the system, while a push system

has no explicit limit on the amount of WIP that can be
in the system with the only limitation of the physical
capacity [13];

3. In a pull system production is triggered by actual
demands for finished products, while in a push system
production is initiated independently of demands and
usually based on forecasting [5].

Following these definitions, it is possible to model any
(discrete) production flow as a composition of different entities
(machines, buffer, etc.) that can be described with Push/Pull
logic. In this context, different workstations, denoted by
WSi,i=1…,n separated by buffers of finite capacity, denoted by
Bi, i=1,.., n. can represent a basic production system.
In the picture below, an example of a process is shown. Here, 2
preparation lines join in an assembly station and then get the
finished parts be stored in a warehouse. Intermediate buffers
decouple activity in the upstream workstations from the
downstream final assembly station.

Figure 1 Example1: Assembly line

We can so state that a generic workstation consists of a
machine, that can be classified (see Figure 2 – on the left) as:

1. Push-Push Machine
2. Pull-Pull Machine
3. Push-Pull Machine
4. Pull-Push Machine

When the Push-Push Machine finishes the part, it pushes it to
the downstream station or buffer and starts working on a new
part only when it is pushed from its upstream machine WSi-1. If
no part is available there, the machine is idle and the production
is on hold.

Instead, when Pull-Pull receives a request from downstream
workstation WSi+1, it pulls the request to upstream workstation
WSi-1 for providing a component. Once it finishes the product
it releases it to the downstream requestor and waits for another
request.

The third machine receives and works a part pushed by the
upstream workstation WSi-1, but it releases that part only when
it receives the request from downstream workstation WSi+1.
Instead, the forth has the opposite behaviour: it requires a part
as soon as it is available and it pushes the part as soon as that
part is finished to the downstream entities.

Workstation
WS 1

Workstation
WS 2

Buffer
B_4

Buffer
B_1

Buffer
B_5

Buffer
B_6

Buffer
B_3

Buffer
B_2

Workstation
WS 3

In Figure 2 arrows specify direction of the operation trigger.

All four machines types have the maximum capacity of 1
product, it means that, before starting work a new product, the
previous one needs to be released to the next stage.
A fifth class of machine behaves as a Pull-Push, but instead of
requesting a product to a single machine, it requests products to
two entities. Such machine implements the joining of two
components in a new product, allowing the assembly of
whatever complex products. This machine takes in 2
components that are “utilized” at the end of the machine cycle
and “creates” the new component.
All 5 machines types operate with the following parameters:

- Operational time: the working time to transform/assemble

products;
- Setup time: based on the product type, a setup is executed

every time the production lot changes;
- Worked products: each machine can be specialized to work

only a limited set of products;
- Optionally can be specified a failure rate to implement

unavailability due to fails and associated repairing cycle.
All above entities implement a production phase characterized
by an optional random variability of cycle duration.
In the same way, it is possible to represent 4 buffer typologies
(see Figure 2 – on the right), as:

1. Pull Buffer
2. Push Buffer
3. Pull-Push Buffer
4. Kanban Buffer

The first Buffer describes a raw parts buffer that provide
material when it receives a request and for this reason is called
“Pull”, it is the first entity of a production process. Vice versa,
the Push Buffer implements a finished goods warehouse or a
buffer with extracted items, it collects parts each time a Push-x
workstation terminates production.
The last two buffers can be used to model the Interoperational
buffers. The difference is that Pull-Push Buffer is a passive
intermediate entity receiving components and providing parts
while Kanban buffer is an active instance able to autonomously
pull items from upstream machine, in order to keep a specific
inventory level. This component is call Kanban buffer to
underline its role in a pull system based on upwards propagation
of the demand.
All four buffers are characterized by a given maximum
capacity.

Figure 2 Production standard entities

III. SYSTEM COMPONENTS AGGREGATION
A generic discrete production system can be represented
aggregating and interconnecting a different set of the entities
described in the previous chapter, specifying for each one the
up-stream station (s) or the down-stream(s) entities. In doing
that, it is necessary to respect compatibility rules that take into
account how each entity works (i.e. input and output). Table 1
describes the possible coupling of the different production
machines / buffers described so far.

TABLE 1 AGGREGATION TABLE

It is also important to consider the possibility to have different
machines working in parallel (e.g. to increase throughput of an
operation) or to have multiple input or output. To this aim, it is
important to consider that “*-Push” entities admit only one
defined output, so “Push-*” machines cannot work in parallel.
For the same reason, “*-Pull” entities cannot work in parallel,
because downstream entities (“Pull-*” entities) need to specify
a single source. In the following TABLE 2, the different options
for multiple sources, drain or parallelism of a machine/buffer
are represented.

TABLE 2 PARALLEL OPERATIONS TABLE

Based on the rules stated above, it is possible to simulate the
behaviour of different discrete production processes, including
linear, synthetic and analytic processes (like in Figure 1). In
implementing a process, it is possible also to insert a retrofit

Downstream -->
Pull - Pull Push-Pull Pull-Push Push-Push Pull Buffer

PushPull
Buffer

Buffer
Push

Kanban
Buffer

Pull-Pull Yes No Yes No NA No No Yes
Push-Pull Yes No Yes No NA No No Yes
Pull-Push No Yes No Yes NA Yes Yes No
Push-Push No Yes No Yes NA Yes Yes No
Pull Buffer Yes No Yes No NA No No Yes
Push-Pull Buffer Yes No Yes No NA No No Yes
Push Buffer NA NA NA NA NA NA NA NA
Kanban Buffer Yes No Yes No NA No No Yes

U
ps

tr
ea

m

loop to represent reworking. In the same way, it is possible to
insert intermediate ”Push” buffers to store, for example,
scrapped material.

IV. THE COMPONENTS IMPLEMENTATION

In the implementation of the above referenced nine functional
entities, we described their behavior with the Finite States
Automata approach. In fact, as described in [14], a generalized
sequential logic system that can be described by a number of
output (n,o) which depends on the present and the past values
of the input (n,i) can be formalized as a Finite State Machine
(FSM).
Therefore, each production standard entities, introduced above,
can be considered as a mathematical abstraction that describes
all the states representing each possible situation in which these
entities may ever be and all inputs and outputs with defined
events. Events are also utilized to synchronized internal
operations like end working or fault/repair.
To this aim, both standards values for Status and Events has
been identified. They can trigger any state transitions, and the
different behaviors each entity can have for any state transition.
In this model based on Moore Machine implementation [15],
the system behaviour is as a sequence of transitions that move
the system through its various states [8]. From this, it is needed
to identify several key characteristics of the system that have to
be modeled with a finite state machine. First of all, the system
has a particular initial state, it must be describable by a finite
set of states and it must have a finite set of inputs and/or events
that can trigger transitions between states [14]. For each
machine a set of possible states and input/output/internal events
have been identified:

TABLE 3 STATUS LIST

Status Meaning
Sx0 Idle
Sx1 Wait for product
Sx2 Working
Sx3 Unloading Product
Sx4 Setup
Sx6 Failure and repair

TABLE 4 EVENTS LIST

Events Meaning

E0 Start/Stop IN
E1 Push product downstream IN/OUT
E2 OK – Acknowledge IN/OUT
E3 KO - Reject IN/OUT
E4 Ask product upstream IN/OUT
E5 End production cycle INTERN
E6 Failure INTERN

The following TABLE 5 represents what are the In/Out Events
each entity can generate and manage.

TABLE 5 EVENTS MANAGEMENT

 Upstream Downstream
Events E1 E2 E3 E4 E1 E2 E3 E4
Pull-Pull -- In In Out -- Out Out In
Push-Pull In Out Out -- -- Out Out In
Pull-Push -- In In Out Out In In --
Push-Push In Out Out -- Out In In --
Pull Buffer -- -- -- -- -- Out Out In

PushPull
Buffer

In Out Out -- -- Out Out In

Buffer Push In Out Out -- -- -- -- --
Kanban
Buffer

-- In In Out -- Out Out In

According TABLE 5 and according the Table 1, it is now possible
to specify for each entity (machine or buffer) what is the
upstream and the downstream entity(-ies) and the respective
inter-relationships.
The description of how each functional component works is
carried out, as we said at the beginning of this chapter, via a
Finite State Automata representation. To implement a model
the user is not due to know or modify the way each automata
works, once the operational and interconnection parameters are
properly set. For this reason, it is important to remark that user
is not expected to know/edit automata coding.
Nevertheless, each automata can be implemented via a reduced
instruction set composed by 4 instructions:

S Next Status (define the status transition)
A Action execution (Actions are code fragments)
E Event (internal or external) generation
I Conditional status transition or event generation

In Figure 3, the implementation of a standard module (Pull-Push
Machine) following the FSA formalism is represented as a
sample.
Please note that empty cells in light green in Figure 3 represent
that a certain event is not admissible in a specific status and for
such reason no need to specify actions is required.
Consistently with the FSA approach, it is possible to recognize
a table with a 5-tuple (Σ, Q, q0, F, δ), typically used to describe
each FSA [14].
The set of symbols representing input (Σ) to SA are collected in
the leftmost column where the list of possible events (internal
or external events) is shown. In the top row, the list of the
current status Q= {S1, S2, Sn} and of the final status F ⊆ Q
representing the set of states of SA, is depicted. q0 ∈ Q is the
initial state (state at time 0 of Automata) and it is identified in
correspondence of E0 event.

Figure 3 Example Push-Pull Machine Automata

Finally, the transition function (δ) is represented within the
row and column intersection with three symbols:
A –Action Execution (a routine written in the platform
language)
E – An internal or external (to another automata) event is
generated
I – in the case of trigger event leads to a hypothetical
condition; the two potential conditions are the eventual
change of status or the generation of another event

The final implementation of a complex production system it so
represented by a number of automata, each one representing a
standard component, acting as autonomous agents and
interacting each other. In the two platform prototypes
implemented was also possible for automata to interact with
physical world via interfacing libraries. [17]

V. AN IMPLEMENTATION EXAMPLE
The industrial real case has been implemented within the EU-
project PERFoRM ([16]) and it concerns to refrigerators and
freezers production.
The real production process is composed of a production line
made by different machines and buffers and it is represented in
Figure 4. Following the production flow, the process starts with
raw part Buffer (Buffer-Pull); it continues with Welding and the
Degreasing workstations (Pull-Pull Machines) and with two
parallel Push-Pull Machines (Primer workstation) and it
finishes with New furnace station, which feeds the Buffer 4.

This process is designed for satisfying the overall external
demand that is equally distributed among 4 different product
types. For this reason, the last part of the line has been modelled
with 4 different Pull-Push Machines, which provide their
products to 4 finished goods buffers (Push Buffer). These are
the crucial parts of the line, as, aiming to follow the market

demand, they establish the production pace and the overall
production demand is pulled to upstream machines.

For this reason, the machines and the inter-operational buffers
are implemented respectively with Pull-Pull Machines and
Kanban Buffers to achieve a “pulled” process. We can observe
that machines 4 and 5 working in parallel and the following
Push Buffer 19 implement a working center with same
characteristics.

Figure 4 Use Case Industrial Plant

The interactions among the different entities, instantiated with
the automata formalism, have been instantiated defining the
initial state for each machine (this data characterizes the
Automata Type among the 9 we presented), the startup events
for each machine to trigger the operations, the identification of
downstream and upstream entities for each module to establish
connections and interactions. Furthermore, the production
parameters explained in the chapter II have to be specified or as
a characteristic for the machine or specific for the product type,
while the max Capacity is the initial condition to be declared
for buffer implementation.
This example was implemented in a MS-Excel/VBA based
platform taking less than half an hour and launching it, we
were able to get useful indications on buffer sizing and line
balancing to dimension operational parameters for further
analysis. If it is needed, a reconfiguration of the model for
simulating different condition, it would take minutes.

VI. CONCLUSIONS
This paper has proposed a specific approach aiming at
providing a complete modelling and simulation process of a
production system and it can be represented according to the
schema depicted in Figure 5.

E0 A Run A Stop A Stop A Stop A Stop A Stop

I
NotEmpty:S:S9
99 S S51 S S52 S S53 S S54 S S56

E E4:InBuffer:0:0
S S51

E1
E2 A LoadBuf I Stop:S:S50 A Scrap

E
E5:0:TOp1:TOp
2 E E4:InBuffer:0:0 S S56

I SetUp:S:S54 S S51
S S52

E3 I Stop:S:S50 E
E1:OutBuffer:P
olling:Polling S S56

E
E4:InBuffer:Poll
ing:Polling S S53

S S51

E4

E5 S S51 E
E1:OutBuffer:0:
0 A Work S S56

A UnLoadBuf E
E5:0:TOp1:TOp
2

S S53 S S52

E6 E
E6:X:Polling:Poll
ing E

E6:X:RepairTim
e:RepairTime A Scrap A Scrap A Scrap E

E6:X:MTBF1:MT
BF2

S S50 S S56 E
E6:X:RepairTim
e:RepairTime E

E6:X:RepairTim
e:RepairTime E

E6:X:RepairTim
e:RepairTime I Stop:S:S50

S S56 S S56 S S56 E E4:InBuffer:0:0
S S51

S51 S52 S53 S54 S56S50

Figure 5 Reference model

In particular, from this figure it is possible to identify different
steps.
At the top, the conceptual and configuration phases described
in Chapters II and III are reported. In fact here, the specific
production line needs to be modeled according to the
aforementioned rules. To this aim, limited technical
competences of the implementation platform, but a significant
knowledge of the analyzed industrial context are required. The
third level is described in Chapter IV and it refers to the
implementation of components utilizing the Finite States
Automata approach. It is not assumed to be modified by user
even if modifications to the way a specific automata works are
possible and can be carried out to implement specific
extensions (e.g. human intervention, preventive maintenance,
etc.). The lowest level deals with the actual implementation of
the platform. Currently 2 prototypes are implemented: one on
MS-Excel/VBA and the second on MATLAB-Simulink [17],
showing its full adaptability to any production context.The
platform is totally transparent from the functional standpoint to
other levels.

ACKNOWLEDGMENT
This project has received funding from the
European Union’s Horizon 2020 research and
innovation program under grant agreement No
680435.

VII. REFERENCES
[1] M. C. Fu and F. W. Glover, “Simulation optimization: a review,

new developments, and applications,” in Winter Simulation
Conference, 2005, no. 1, pp. 83–95.

[2] S. G. Platzman, L. K., “Simulating computer integrated
manufacturing systems: how to model what traditional methods
force you to ignore,” in IEEE International Conference on Systems,
Man, and Cybernetics. IEEE, 1986.

[3] S. Ruiz-mier and J. Talavage, “Hybrid paradigm for modeling of
complex systems,” Simulation Council, pp. 135–141, 1982.

[4] H. S. Ismail, V. S. Tey, L. Wang, and J. Poolton, “A UML
Approach for the Design of Reconfigurable Manufacturing
Simulation Models,” in IEEE IEEM, 2011, pp. 1690–1694.

[5] Liberopoulos, G. (2013, May). Production Release Control and the
Push/Pull and Make-to-Order/Make-to-Stock Distinctions. In H.
Tempelmeier, H. Kuhn and K. Furmans, eds., Proceedings of the 9
th conference on Stochastic Models of Manufacturing and Service
Operations, Kloster-Seeon, Germany (pp. 113-120).

[6] B. Yu and J. Harding, “A reusable enterprise model,” Int. J. Oper.
Prod. Manag., vol. 20, no. 1, pp. 55–69, 2010.

[7] Nance, R. E. (1996). A history of discrete event simulation
programming languages (pp. 369-427). ACM.

[8] Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents:
Theory and practice. The knowledge engineering review, 10(02),
115-152.

[9] B. Campana, G. Cimatti, “Measures and methods for a new
taxonomy in manufacturing enterprises,” in Procedia CIRP, 2015, p.
287–292.

[10] Klaas, Thorsten. "Push-vs. Pull-Concepts in Logistics Chains."
Proceedings of CEMS Academic Conference, Louvain-la-Neuve.
1998 pp. 1–14.

[11] R. S. Schonberger, Japanese Manufacturing Techniques: Nine
hidden lessons in semplicity. Simon and Schuster, 1982.

[12] S. Nahmias, Production and Operations Analysis, 6th ed. Boston:
McGraw-Hill, 2009.

[13] González-r, P. L., Framinan, J. M., & Pierreval, H. (2012). Token-
based pull production control systems: an introductory overview.
Journal of Intelligent Manufacturing, 23(1), 5.

[14] F. Boschi, G. Tavola, M. Taisch, “A description and analysis
method for reconfigurable production systems based on Finite State
Automaton environments,” in Service Orientation in Holonic and
Multi-Agent Manufacturing, 2016, pp. 349–358.

[15] J. Hopcroft and J. Ullman, “Finite Automata,” in Introduction to
Automata Theory Languages and Computation, S. Rivas, Ed.
Pearson Education, 1979, pp. 37–81.

[16] PERFoRM – Production harmonizEd Reconfiguration of Flexible
Robots and Machinery, “http://www.horizon2020-perform.eu,”
2016.

[17] Simulink, Matlab, and M. A. Natick. "The mathworks." (1993)” .

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

